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Abstract. In this paper we compare two techniques developed in recent
years to overcome the limitations of conventional approaches, the
wavelet transform and the empirical mode decomposition. The wavelet
analysis decompose data through multiple scales using a previously
selected basis from many available wavelet function families, moreover
it has a fast discrete algorithm which is computationally less complex
than the Fast Fourier Transform. In the empirical mode decomposition
the basis is extracted from the data itself, thus it is optimal for that
given data set and provides a more detailed view of the internal
dynamics of the process, however it is computationally intensive. First
we present a brief theoretical background of both techniques. Then we
review some experimental results with complex and chaotic time series.

1. Introduction

In order to obtain useful information from complex data is often desirable to separate
the data into its basic components such that those components are easier to examine
and give a more meaningful representation of the phenomenon.

Unfortunately the traditional approach — the Fourier analysis and its derivatives —
assumes that the data is linear and stationary, this assumption leads to a very poor
resolution of the embedded structures of the phenomenon in this new representation,
since most of the significant phenomena are non-stationary and present non-linear
effects to some degree.

Wavelet analysis is now a well established theory based in the multiresolution
concept where a prototype function with compact support is dilated and contracted to
see the general behavior and the fine detail in the data

With this approach we can overcome the limitations with non-stationary data that
Fourier analysis presents and obtain a time-scale-energy representation that has been
very useful in many areas.

The Empirical Mode Decomposition (EMD) is based on the concept of extractir)g the
intrinsic mode functions (IMF) from the data. Such functions have a meaningful
instantaneous frequency and in consequence a well behaved Hilbert transform.
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The EMD is defined by an algorithm rather than an analytical function, hOWever
given that the basis is extracted from the data itself, it is adaptive and in addition to
overcome the non stationary limitations, it provides more detail for the non-lingg,
effects in the data set because it extracts the oscillatory modes inherent to (he
phenomenon.

2. Wavelet analysis

The Continuous Wavelet Transform (CWT) is defined as

y [ ] _— (1)
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Where vy is a prototype function called “mother wavelet”, b is the location of the
analysis window and a is the scale. Such function must fulfill certain requirements
such as having finite length and energy, and it has to be an oscillatory function that is
well localized both in time and frequency. A wavelet prototype is often called a time-
frequency atom.

When we deal with discrete time functions, we can calculate the inner product of the
wavelet basis and the data using numerical methods, however it is computationally
intensive and it yields redundant data, for that reason there was a need to found a way
to construct a discrete transform with a fast algorithm.

Fortunately, a close relationship between wavelets and filterbanks was found. If we
define two functions such that

o (2)
o(x)= ¢, 6(2x-n)

N=-a

& 3)
Y= 20", 10Q@x—n)
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a low-pass, perfect reconstruction FIR filter A, can be constructed as described in [1].

Once the low pass filter is constructed, using (4) we obtain a quadrature mirror
filterbank (QMF), such filterbank is used for analysis and synthesis of the data.

I (n)= (=1)"hy(L - n-1) (4)

The Discrete Wavelet Transform (DWT) is then defined as

o (5)
yuk) =Y x(n)- hy(2k = n)

k=-0
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3 (6)
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The function y,(k) is called the detail coefficients and it is obtained filtering the
original signal with the high pass filter and then downsampling in a dyadic fashion.
The function y,(k) is called the approximation coefficients, it is obtained with the low
pass filter, each one of them can be further decomposed with the same filterbank in
octave bands or in an arbitrary tree.

This result is of great importance because it means that every orthogonal wavelet
basis has an associated filter and thus, a fast discrete transform, furthermore it is also
shown that wavelets can be constructed from FIR filters although not every filter can
result in a wavelet.

The main drawback in the wavelet analysis is that once a basis is selected, it is used
during the whole process, and we cannot assume that a single basis is the best for all
the data — especially in non-linear cases — and while the resolution is acceptable,
sometimes a better resolution is desirable.

3. Empirical mode decomposition

The empirical mode decomposition was introduced in [3] by Huang et al to obtain an
analysis method that was complete, orthogonal, local and adaptive from where time-
frequency scales were extracted. The principle of this technique is to decompose a
signal x(t) into a sum of intrinsic mode functions such that;

n 7
x(t)= ) imf; () +r,, (t) @
i=l

An intrinsic mode function is a function that satisfies two concitions (1) have the
same numbers of zero crossings and extrema; and (2) are symmetric with respect to
the local mean. The first condition is similar to the traditional narrow band
requirements for a stationary Gaussian process. The second condition modifies the
classical global requirement to a local one; it is necessary to eliminate unwanted
fluctuations from the instantaneous frequency that asymmetric wave forms introduce.

With this definition, an IMF is not restricted to a narrow band signal, and it can be
both amplitude and frequency modulated. This provides more flexibility as one
embedded oscillation mode is allowed to have more than one component.

The algorithm for the decomposition is as follows
1. Initialize r(t) = x(t), i = 1
2. Extract the i-th IMF:
(a) Initialize hO(t) =ri(t),j =1
(b) Extract the local minima and maxima of hj-1(t)
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(c) Interpolate the local minima and maxima by a cubic spline to form u
and lower envelopes of hj-1(t) Pper
(d) Calculate the mean mj-1(t) of the upper and lower envelopes of hj-1(t)
(e} hj(t) = hj-1(t) — mj-1(t)
(f) If stopping criterion is satisfied then
set imfi(t) = hj(t)
else goto (b) withj=j + 1
3. ri(t) = ri-1(t) — imfi(t)
4. If ri(t) still has two extrema, then
goto2withi=i+1
else the decomposition has finished and ri(t) is the residue.

Step 2 is known as the sifting process, and has two effects: eliminates riding waves:
and smoothes uneven amplitudes. Unfortunately, the second effect, when carried tq
the extreme, could destroy the physically meaningful amplitude fluctuations. To
guarantee that the IMF components retain enough physical sense of both amplitude
and frequency modulations, in the stopping criterion we have to limit the size of the
standard deviation between two consecutive sifting results, the suggested value in the
literature is 0.3.

4. Experimental results
We analyzed a set of 30 time series with both techniques, here we present detailed
results for one of them, the time series are measurements from El Nifio phenomenon

of complex nature (Figure 1). All time series consist of one thousand samples.

The complete list of the employed time series and their classification according to [6]
and [7] is shown in Table 1.

Table 1. Time series used for the experiments

Time Series Nature Time Series Nature

Sine periodic Dow Jones complex
Vanderpol periodic Kobe complex
Qperiodic2 quasiperiodic ECG complex
Qperiodic3 quasiperiodic EEG complex
Mackey-Glass chaotic ASCII complex
Logistic chaotic El nifio complex
Lorenz chaotic HIV DNA complex
Rossler chaotic Human DNA complex
Ikeda chaotic Lovaina complex
Henon chaotic Plasma complex
Cantor chaotic Primes complex
Tent chaotic SP500 complex
Al complex Star complex
Dl complex Brownian motion complex

Laser complex White Noise complex -
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The DWT was computed obtaining six decomposition levels using the ‘DB8’ wavelet.
The EMD was computed until no extrema were found in the residual.

Two interesting cases were the prime number and the Lovaina time series. The prime
number time series consists in the distance from one prime number to the next, and

the Lovaina time series was generated from ASCII data for the Lovaina University
contest.

In the Prime nurpber case, there were contiguous identical maxima, consequently the
spline interpolation algorithm returned with error.

In the Lovaina case, during the sifting process, the extracted functions never fulfilled
the 0.3 standard deviation stopping criterion, so it iterated indefinitely, when the
criterion was relaxed to 0.35, the EMD went without trouble and the original time
series were reconstructed from the IMFs with no significant distortion

In Figures 2 and 3 we can appreciate how the EMD and the DWT decompose the data
going from fine details to a coarse approximation, but the oscillations in each level of
decomposition are more contoured in the IMFs.
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Fig. 1. El Niito time series

Also we can notice how the number of IMFs increases with the intricacy of the data.
In Table 2 lists the number of extracted IMFs using the EMD algorithm with each
time series.

Unlike the discrete wavelet transform which is dependant on the amount of samples in
the time series, the number of intrinsic mode functions extracted from the data with
the empirical mode decomposition, is dependant only from the dynamics of the
phenomenon. Even the most intricate time series resulted in no more than 16 intrinsic
mode functions, and the average number of IMFs is 12.
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Fig. 2. El Nilo DWT detail and approximation coefficients
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Fig. 3. EI Nifio IMFs and residual resulting trom the EMD
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Table 2. Number of extracted IMFs

= Time Series IMFs Time Scries IMFs

“Asciilxt 15 logistic 14
brownian 10 lorentz 7
Cantor 14 lovaina 10
DI 12 mackey 14
Djones 12 plasma 16
Ecg 9 gperiodic2 9
Eeg 13 qperiodic3 12
Elnino 10 rossler 8
henon 16 SP500 15
hivdna 13 Sine 8
humandna 9 Star 13
ikeda 15 Tent 16
kobe 15 vanderpol 6
laser 15 whitenoise 15

Another interesting property of the EMD is that the oscillatory modes it finds may
have certain physical meaning, not jus a band of frequencies than comprise the signal
and the residual can be interpreted as a trend of the time series.

In the Hilbert spectrum in Figure 4 it is also shown how the energy is more spread in
the wavelet analysis while with the IMFs the instantaneous frequencies are very
accurate and thus is easier to understand the behavior of the phenomenon as the
frequency components at a given instant are evident.

.-
T

Y
1 Froganac)
= i

o NyssiesFregee
o i b
Nermabied Fre

2 ..'-'f\'l ..'l;;'f ‘.l'.~..'.l"i i

ey By B
: _ﬁ,;:?‘, Y
B S S S LS SRS SRS S - S 9
T g

Fig. 4. (a)El Nifio IMFs Hilbert Spectrum (b) El nifio CWT Hilbert Spectrum

In Figure 5 we can observe that both techniques can be useful to remove certain
components from data. First we added Gaussian noise to the ECG time series, to
reduce the noise components we disregarded the first five detail levels in the DWT
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case, and the first six IMFs of the EMD. After reconstruction, similar results wer
obtained, the EMD obtained better results reconstructing the main peak of the ECé
(the QRS complex) but in the last part, the signal reconstructed from the DWT s less

distorted.
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Fig. 5. (a)ECG with additive Gaussian noise, parameters p=0, o=1 (b) ECG denoised
discarding detail levels (c) ECG denoised discarding IMFs
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Finally in Table 3 we can compare the signal to noise ratio (SNR) obtained from the
original data and the reconstructed data with both techniques, as we can see, both
offer excellent reconstruction and the error could be attributed to the floating point
operations but the EMD.reconstruction offers much lower distortion probably because
the DWT losses energy in the downsampling and upsampling stages

Table 3. SNR for reconstructed data.

~ Series EMD. DWT Series EMD DWT
“Asciitxt 315.1785  236.3873 logistic 313.2426  235.9292
brownian 315.6049 225.7096 lorentz 317.2882 222.7929
Cantor 315.414 229.9274 lovaina 315.6988 221.3103
DI 312.3989 230.0365 mackey 315.4807 230.1314
Djones 315.6676 237.8043 plasma 312.5775 223.6647
Ecg 317.1134 232.7189 qperiodic2 318.302 239.3443
Eeg 312.8058 220.5422 qperiodic3 317.4853 243.7349
Elnino 317.4214 245.1368 rossler 316.6886 220.322
henon 314.5757 227.7612 SP500 315.6374 237.043
hivdna 315.3482 232.6521 Sine 317.4877 219.0768
humandna 316.203 247.3116 Star 312.5734 219.2526
ikeda 313.8854 230.1964 Tent 312.8422 251.1903
kobe 314.9108 225.7457 vanderpol 310.5083 219.0846
laser 313.1771 231.8879 whitenoise 313.7753 230.8806

5. Conclusions

We have analyzed several complex and chaotic time series with two relatively recent
analysis techniques, the wavelets and the empirical mode decomposition. We
observed results in a time-amplitude domain and in a frequency-time-energy domain
to compare their behavior resolution, and then synthesized the data from the
components to measure the accuracy of the reconstruction they offer.

The EMD is a step further in the classical signal analysis and the resulting
decomposition helps to identify underlying structures and trends however with large
data sets its complexity and the fact that it needs from ten to fifteen times the size of
the original data set can pose a problem. The wavelet analysis is better suited for large
amount of streaming data as it has a fast algorithm and only needs a buffer with the

same size of the filters and the resulting coefficients have the same length of the
original data.

On the other hand, if one wants to synthesize a signal after some processing in the
components, the reconstruction is much simpler with the EMD as one must only sum
all the IMFs while the inverse discrete wavelet transform (IDWT) involves filtering
and dyadic upsampling in each level.

The EMD is another example where an intuitive computational solution provides
better results than an analytical one. Regrettably as of today, the EMD is defined only
for one-dimensional data.
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ti

Although the EMD has no mathematical proof of orthogonality, the reconstructe

me series had a better signal to noise ratio than the ones reconstructed from DWT

Perhaps it is not important which technique is better suited for a given problem by,
that we have another useful representation of data which gives more chances to obtain
Interpretations of such data and to understand phenomena.
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